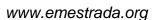


PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011

MATEMÁTICAS II

TEMA 3: ESPACIO AFIN Y EUCLIDEO

- Junio, Ejercicio 4, Opción A
- Junio, Ejercicio 4, Opción B
- Reserva 1, Ejercicio 4, Opción A
- Reserva 1, Ejercicio 4, Opción B
- Reserva 2, Ejercicio 4, Opción A
- Reserva 2, Ejercicio 4, Opción B
- Reserva 3, Ejercicio 4, Opción A
- Reserva 3, Ejercicio 4, Opción B
- Reserva 4, Ejercicio 4, Opción A
- Reserva 4, Ejercicio 4, Opción B
- Septiembre, Ejercicio 4, Opción A
- Septiembre, Ejercicio 4, Opción B



Determina el punto simétrico del punto A(-3,1,6), respecto de la recta r de ecuaciones:

$$x-1=\frac{y+3}{2}=\frac{z+1}{2}$$
.

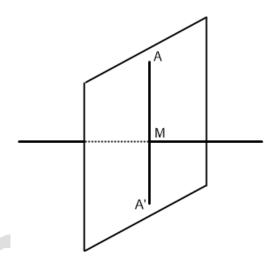
MATEMÁTICAS II. 2011. JUNIO. EJERCICIO 4. OPCIÓN A.

RESOLUCIÓN

Pasamos la recta a paramétricas:
$$x-1 = \frac{y+3}{2} = \frac{z+1}{2} \Rightarrow y = -3 + 2t$$

$$z = -1 + 2t$$

El punto A' simétrico del punto A respecto de una recta está situado en un plano que pasando por el punto A es perpendicular a dicha recta y además la distancia que hay desde el punto A a la recta es la misma que la que hay desde el punto A' hasta dicha recta.



Calculamos la ecuación del plano que pasando por el punto A es perpendicular a la recta. Como la recta es perpendicular al plano, el vector director de dicha recta y el vector normal del plano son paralelos, luego: Vector normal del plano = vector director de la recta = (1, 2, 2)

La ecuación de todos los planos perpendiculares a dicha recta es: x+2y+2z+D=0. Como nos interesa el que pasa por el punto A(-3,1,6)

$$-3 + 2 \cdot 1 + 2 \cdot 6 + D = 0 \Rightarrow D = -11 \Rightarrow x + 2y + 2z - 11 = 0$$

Calculamos las coordenadas del punto de intersección de la recta con el plano (M); para ello sustituimos la ecuación de la recta en la del plano: $(1+t)+2(-3+2t)+2(-1+2t)-11=0 \Rightarrow t=2$ luego las coordenadas del punto M son: x=1+2=3; y=-3+4=1; z=-1+4=3

Como el punto M es el punto medio del segmento A A', si llamamos (a,b,c) a las coordenadas del punto A', se debe verificar que: $\frac{-3+a}{2} = 3$; a = 9; $\frac{1+b}{2} = 1$; b = 1; $\frac{6+c}{2} = 3$; c = 0

Luego, el punto simétrico es: (9,1,0).

Considera los puntos A = (1,0,-1) y B = (2,1,0) y la recta r dada por $\begin{cases} x+y=1\\ x+z=2 \end{cases}$

a) Determina la ecuación del plano que es paralelo a r y pasa por A y B.

b) Determina si la recta que pasa por los puntos P = (1,2,1) y Q = (3,4,1) está contenida en dicho plano.

MATEMÁTICAS II. 2011. JUNIO. EJERCICIO 4. OPCIÓN B

a) Calculamos el vector director de la recta r.

$$\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix} = (1, -1, -1) = \vec{u}$$

El plano que nos piden viene definido por el punto A, el vector $\overrightarrow{AB} = (1,1,1)$ y el vector $\overrightarrow{u} = (1,-1,-1)$ y su ecuación es:

$$\begin{vmatrix} x-1 & 1 & 1 \\ y & 1 & -1 \\ z+1 & 1 & -1 \end{vmatrix} = 0 \Rightarrow 2y-2z-2 = 0 \Rightarrow y-z-1 = 0$$

b) Si la recta que pasa por P y Q está contenida en el plano eso quiere decir que los puntos P y Q son del plano. Vemos que el punto P si verifica la ecuación del plano, pero el punto Q no la verifica, luego, la recta que pasa por P y Q no está contenida en el plano.

$$2-1-1=0 \Rightarrow P$$
 está en el plano

$$4-1-1 \neq 0 \Rightarrow Q$$
 no está en el plano

Considera los puntos A(1,0,2) y B(1,2,-1).

- a) Halla un punto C de la recta de ecuación $\frac{x-1}{3} = \frac{y}{2} = z$ que verifica que el triángulo de vértices
- A, B y C tiene un ángulo recto en B.
- b) Calcula el área del triángulo de vértices A, B y D, donde D es el punto de corte del plano de ecuación 2x y + 3z = 6 con el eje OX.

MATEMÁTICAS II. 2011. RESERVA 1. EJERCICIO 4. OPCIÓN A.

RESOLUCIÓN

a) Si pasamos la recta a paramétricas, cualquier punto C tendrá de coordenadas C = (1+3t, 2t, t).

Como el triángulo es rectángulo en B, los vectores $\overrightarrow{BA} = (0, -2, 3)$ y $\overrightarrow{BC} = (3t, 2t - 2, t + 1)$, tienen que ser perpendiculares, luego, su producto escalar debe valer cero.

$$\overrightarrow{BA} \cdot \overrightarrow{BC} = (0, -2, 3) \cdot (3t, 2t - 2, t + 1) = -4t + 4 + 3t + 3 = 0 \Rightarrow t = 7$$

Luego, el punto C tiene de coordenadas C = (1+3t, 2t, t) = (22, 14, 7)

b) Calculamos el punto de corte del plano con el eje OX, que será: D = (3,0,0)

Calculamos los vectores $\overrightarrow{AB} = (0, 2, -3)$ y $\overrightarrow{AD} = (2, 0, -2)$.

Hacemos el producto vectorial de los vectores: $\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & 2 & -3 \\ 2 & 0 & -2 \end{vmatrix} = -4\vec{i} - 6\vec{j} - 4\vec{k}$

Área del triángulo =
$$\frac{1}{2} m \acute{o} dulo \left(\overrightarrow{AB} \wedge \overrightarrow{AC} \right) = \frac{1}{2} \sqrt{(-4)^2 + (-6)^2 + (-4)^2} = \frac{\sqrt{68}}{2} u^2$$

Considera los planos π_1 , π_2 y π_3 dados respectivamente por las ecuaciones:

$$3x-y+z-4=0$$
, $x-2y+z-1=0$ y $x+z-4=0$

Halla la ecuación de la recta que pasa por el punto P(3,1,-1), es paralela a π_1 y corta a la recta intersección de los planos π_2 y π_3 .

MATEMÁTICAS II. 2011. RESERVA 1. EJERCICIO 4. OPCIÓN B

RESOLUCIÓN

Pasamos a paramétricas la recta intersección de los planos π_2 y π_3 .

$$x-2y+z-1=0 \\ x+z-4=0$$
 \Rightarrow
$$\begin{cases} x=4-t \\ y=\frac{3}{2} \\ z=t \end{cases}$$

Luego, cualquier punto A de la recta tiene de coordenadas $A(4-t,\frac{3}{2},t)$.

La recta que nos piden pasa por P y A, y tiene que ser paralela al plano π_1 , luego el vector normal del plano $\vec{n} = (3, -1, 1)$ y el vector $\vec{PA} = (1 - t, \frac{1}{2}, t + 1)$ tienen que ser perpendiculares, luego, su producto escalar debe valer cero.

$$\overrightarrow{n} \cdot \overrightarrow{PA} = (3, -1, 1) \cdot (1 - t, \frac{1}{2}, t + 1) = 3 - 3t - \frac{1}{2} + t + 1 = 0 \Rightarrow t = \frac{7}{4}$$

El vector de la recta es: $\overrightarrow{PA} = (1 - \frac{7}{4}, \frac{1}{2}, \frac{7}{4} + 1) = \left(-\frac{3}{4}, \frac{1}{2}, \frac{11}{4}\right).$

Por lo tanto, la recta que nos piden es: $\frac{x-3}{-\frac{3}{4}} = \frac{y-1}{\frac{1}{2}} = \frac{z+1}{\frac{11}{4}}$

Dados los puntos A(1,0,0), B(0,0,1) y P(1,-1,1), y la recta r definida por $\begin{cases} x-y-2=0 \\ z=0 \end{cases}$

- a) Halla los puntos de la recta r cuya distancia al punto P es de 3 unidades.
- b) Calcula el área del triángulo ABP.

MATEMÁTICAS II. 2011. RESERVA 2. EJERCICIO 4. OPCIÓN A.

RESOLUCIÓN

Cualquier punto C tendrá de coordenadas C=(2+t,t,0). Calculamos el módulo del vector $\overrightarrow{PC}=(1+t,t+1,-1)$ y lo igualamos a 3.

$$|\overrightarrow{PC}| = \sqrt{(1+t)^2 + (t+1)^2 + (-1)^2} = 3 \Rightarrow t^2 + 2t - 3 = 0 \Rightarrow t = 1; t = -3$$

Luego, los puntos son: $C_1 = (3,1,0)$; $C_2 = (-1,-3,0)$.

b) Calculamos los vectores $\overrightarrow{AB} = (-1,0,1)$ y $\overrightarrow{AP} = (0,-1,1)$.

Hacemos el producto vectorial de los vectores: $\begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{vmatrix} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$

Área del triángulo =
$$\frac{1}{2} m \acute{o} dulo \left(\overrightarrow{AB} \wedge \overrightarrow{AP} \right) = \frac{1}{2} \sqrt{(1)^2 + (1)^2 + (1)^2} = \frac{\sqrt{3}}{2} u^2$$

Dados el punto P(1,1,-1), y la recta r de ecuaciones $\begin{cases} x+z=1\\ y+z=0 \end{cases}$

- a) Halla la ecuación del plano que contiene a r y pasa por P.
- b) Halla la ecuación de la recta contenida en el plano de ecuación y+z=0, que es perpendicular a r y pasa por P.

MATEMÁTICAS II. 2011. RESERVA 2. EJERCICIO 4. OPCIÓN B.

RESOLUCIÓN

La recta pasa por el punto y su vector director es $\vec{u} = (-1, -1, 1)$. El plano que nos piden viene definido por el punto A = (1, 0, 0), el vector $\vec{u} = (-1, -1, 1)$ y el vector $\overset{\rightarrow}{AP} = (0, 1, -1)$, luego, su ecuación es:

$$\begin{vmatrix} x-1 & -1 & 0 \\ y & -1 & 1 \\ z & 1 & -1 \end{vmatrix} = 0 \Rightarrow y+z=0$$

b) La recta pasa por el punto P = (1, 1, -1) y su vector director es $\overrightarrow{v} = (a, b, c)$.

Como la recta es perpendicular a r, el producto escalar de $\overrightarrow{u \cdot v} = 0 \Rightarrow -a - b + c = 0$. Además la recta está contenida en el plano y + z = 0, entonces el producto escalar del vector normal del plano $\overrightarrow{n} = (0,1,1)$ y el vector $\overrightarrow{v} = (a,b,c)$, también es cero, luego: b+c=0.

Resolviendo el sistema formado por las dos ecuaciones, tenemos:

$$\begin{vmatrix} -a-b+c=0 \\ b+c=0 \end{vmatrix} \Rightarrow \stackrel{\rightarrow}{v} = (2c,-c,c)$$

Vemos que hay infinitos vectores. Si por ejemplo, damos a c el valor 1, la recta será:

$$\frac{x-1}{2} = \frac{y-1}{-1} = \frac{z+1}{1}$$

Sea el punto
$$P(2,3,-1)$$
, y la recta r dada por las ecuaciones $y=-2\lambda$ $z=\lambda$

- a) Halla la ecuación del plano perpendicular a r y que pasa por P.
- b) Calcula la distancia del punto P a la recta r y determina el punto simétrico de P respecto de r. MATEMÁTICAS II. 2011. RESERVA 3. EJERCICIO 4. OPCIÓN A.

RESOLUCIÓN

- a) El vector normal del plano es el vector director de la recta u = n = (0, -2, 1). Luego, todos los planos perpendiculares a r tienen de ecuación: -2y + z + D = 0. Nos interesa el que pasa por P = (2, 3, -1), luego su ecuación será: $-2 \cdot 3 1 + D = 0 \Rightarrow D = 7 \Rightarrow -2y + z + 7 = 0$
- b) Calculamos el punto de corte de la recta con el plano. Para ello sustituimos la ecuación de la recta en la del plano.

$$-2y + z + 7 = 0 \Rightarrow -2 \cdot (-2\lambda) + \lambda + 7 = 0 \Rightarrow \lambda = -\frac{7}{5}$$

Luego, el punto de corte es:
$$M = \left(1, -2 \cdot \left(-\frac{7}{5}\right), -\frac{7}{5}\right) = \left(1, \frac{14}{5}, -\frac{7}{5}\right)$$

La distancia que nos piden viene dada por el módulo del vector $\overrightarrow{PM} = \left(-1, -\frac{1}{5}, -\frac{2}{5}\right)$

$$d = | \overrightarrow{PM} | = \sqrt{(-1)^2 + \left(-\frac{1}{5}\right)^2 + \left(-\frac{2}{5}\right)^2} = \sqrt{\frac{6}{5}} u$$

M es el punto medio del segmento PP', siendo P' el simétrico, luego:

$$M = \left(1, \frac{14}{5}, -\frac{7}{5}\right) = \left(\frac{2+a}{2}, \frac{3+b}{2}, \frac{-1+c}{2}\right) \Rightarrow a = 0 \; ; \; b = \frac{13}{5} \; ; \; c = -\frac{9}{5}$$

Luego, el simétrico es: $P' = \left(0, \frac{13}{5}, -\frac{9}{5}\right)$

Considera los planos π_1 y π_2 dados, respectivamente, por las ecuaciones

$$(x, y, z) = (-2, 0, 7) + \lambda(1, -2, 0) + \mu(0, 1, -1)$$
 y $2x + y - z + 5 = 0$

Determina los puntos de la recta r definida por $x = y + 1 = \frac{z - 1}{-3}$ que equidistan de π_1 y π_2 .

MATEMÁTICAS II. 2011. RESERVA 3. EJERCICIO 4. OPCIÓN B.

Pasamos el plano π_1 a forma general:

$$\begin{vmatrix} x+2 & 1 & 0 \\ y & -2 & 1 \\ z-7 & 0 & -1 \end{vmatrix} = 0 \Rightarrow 2x+y+z-3=0$$

Cualquier punto de la recta tiene de coordenadas: A = (t, -1 + t, 1 - 3t).

Aplicamos la fórmula de la distancia de un punto a un plano.

$$\frac{\left|2t-1+t+1-3t-3\right|}{\sqrt{2^2+1^2+1^2}} = \frac{\left|2t-1+t-1+3t+5\right|}{\sqrt{2^2+1^2+1^2}} \Rightarrow \left|-3\right| = \left|6t+3\right| \Rightarrow t=0 \; ; \; t=-1$$

Luego, los puntos son: si $t = 0 \Rightarrow A = (0, -1, 1)$; $t = -1 \Rightarrow A = (-1, -2, 4)$

Dada la recta
$$r$$
 definida por $\frac{x-1}{3} = \frac{y+1}{2} = -z+3$, y la recta s definida por $\begin{cases} x=1 \\ 2y-z=-2 \end{cases}$

a) Halla la ecuación del plano que pasa por el origen y contiene a r.

b) Halla la ecuación del plano que contiene a s y es paralelo a r.

MATEMÁTICAS II. 2011. RESERVA 4. EJERCICIO 4. OPCIÓN A.

RESOLUCIÓN

a) Pasamos la recta
$$r$$
 a implícitas: $\frac{x-1}{3} = \frac{y+1}{2} = -z+3 \Rightarrow \begin{cases} x+3z=10 \\ y+2z=5 \end{cases}$

Calculamos el haz de planos, es decir la ecuación de todos los planos que contienen a r.

$$x+3z-10+k(y+2z-5)=0$$

De todos esos planos nos interesa el que pasa por el origen de coordenadas, luego, ese punto debe satisfacer la ecuación del plano.

$$x+3z-10+k(y+2z-5)=0 \Rightarrow 0+0-10+k(0+0-5)=0 \Rightarrow k=-2$$

Luego, la ecuación del plano que nos piden es: $x+3z-10-2(y+2z-5)=0 \Rightarrow x-2y-z=0$.

b) Calculamos la ecuación de todos los planos que contienen a s.

$$x-1+k(2y-z+2)=0 \Rightarrow x+2ky-kz-1+2k=0$$

Como queremos que sea paralelo a r, el vector normal del plano $\vec{n} = (1, 2k, -k)$ y el vector director de la recta $\vec{u} = (3, 2, -1)$, tienen que ser perpendiculares, luego, su producto escalar debe valer cero.

$$\overrightarrow{u} \cdot \overrightarrow{n} = (3, 2, -1) \cdot (1, 2k, -k) = 3 + 4k + k = 0 \Rightarrow k = -\frac{3}{5}$$

Por lo tanto, la ecuación del plano que nos piden es: $x + 2ky - kz - 1 + 2k = 0 \Rightarrow 5x - 6y + 3z - 11 = 0$

Dada la recta
$$r$$
 definida por $\frac{x+7}{2} = \frac{y-7}{-1} = z$ y la recta s definida por
$$\begin{cases} x = 2 \\ y = -5 \\ z = \lambda \end{cases}$$

a) Halla la ecuación de la recta que corta perpendicularmente a ambas.

b) Calcula la distancia entre r y s.

MATEMÁTICAS II. 2011. RESERVA 4. EJERCICIO 4. OPCIÓN B.

RESOLUCIÓN

Escribimos las ecuaciones de las dos rectas en forma paramétrica.

$$r \equiv \begin{cases} x = -7 + 2t \\ y = 7 - t \end{cases} \quad \text{y} \quad s \equiv \begin{cases} x = 2 \\ y = -5 \\ z = s \end{cases}$$

Cualquier punto de la recta r tendrá de coordenadas A = (-7 + 2t, 7 - t, t) y cualquier punto de la recta s tendrá de coordenadas B = (2, -5, s)

El vector \overrightarrow{AB} tendrá de coordenadas: $\overrightarrow{AB} = (9-2t, -12+t, s-t)$

Como el vector \overrightarrow{AB} tiene que ser perpendicular a la recta r y s se debe cumplir que:

$$\overrightarrow{AB} \cdot \overrightarrow{u} = 0 \Rightarrow (9 - 2t, -12 + t, s - t) \cdot (2, -1, 1) = 0 \Rightarrow 30 - 6t + s = 0$$

$$\overrightarrow{AB} \cdot \overrightarrow{v} = 0 \Rightarrow (9 - 2t, -12 + t, s - t) \cdot (0, 0, 1) = 0 \Rightarrow s - t = 0$$

Resolviendo las dos ecuaciones, obtenemos que t = 6; s = 6

Luego, los puntos A y B que están a mínima distancia tienen de coordenadas

$$A = (5,1,6)$$
; $B = (2,-5,6)$

a) La recta que nos piden viene definida por: A = (5,1,6) y $\overrightarrow{AB} = (-3,-6,0)$. Su ecuación es:

$$\frac{x-5}{-3} = \frac{y-1}{-6} = \frac{z-6}{0}$$

b) La distancia es el módulo del vector $\overrightarrow{AB} = (-3, -6, 0)$

$$d = \left| \overrightarrow{AB} \right| = \sqrt{(-3)^2 + (-6)^2 + 0} = \sqrt{45} \ u$$

Considera los puntos A(-1,k,3), B(k+1,0,2), C(1,2,0) y D(2,0,1).

- a) ¿Existe algún valor de k para el que los vectores $\overrightarrow{AB}, \overrightarrow{BC} y \overrightarrow{CD}$ sean linealmente dependientes?.
- b) Calcula los valores de k para los que los puntos A,B,C y D forman un tetraedro de volumen 1

MATEMÁTICAS II. 2011. SEPTIEMBRE. EJERCICIO 4. OPCIÓN A.

RESOLUCIÓN

a) Calculamos los vectores: $\overrightarrow{AB} = (k+2, -k, -1)$; $\overrightarrow{BC} = (-k, 2, -2)$; $\overrightarrow{CD} = (1, -2, 1)$. Para que sean linealmente dependientes, su determinante debe valer cero, luego:

$$\begin{vmatrix} k+2 & -k & -1 \\ -k & 2 & -2 \\ 1 & -2 & 1 \end{vmatrix} = -k^2 - 2k - 2 = 0 \Rightarrow \text{ No tiene solución real}$$

Luego, no hay ningún valor de *k* para el que los vectores sean linealmente dependientes.

b) Calculamos los vectores: $\overrightarrow{AB} = (k+2, -k, -1)$; $\overrightarrow{AC} = (2, 2-k, -3)$; $\overrightarrow{AD} = (3, -k, -2)$.

$$V = 1 = \frac{1}{6} \begin{vmatrix} k+2 & -k & -1 \\ 2 & 2-k & -3 \\ 3 & -k & -2 \end{vmatrix} = \frac{1}{6} |-k^2 - 2k - 2| \Rightarrow |-k^2 - 2k - 2| = 6 \Rightarrow$$

$$\Rightarrow \begin{cases} -k^2 - 2k - 2 = 6 \Rightarrow No \\ -k^2 - 2k - 2 = -6 \Rightarrow k = -1 \pm \sqrt{5} \end{cases}$$

Dados el plano π de ecuación x + 2y - z = 0 y la recta r de ecuaciones $\begin{cases} 3x - y = 5 \\ x + y - 4z = -13 \end{cases}$

- a) Halla el punto de intersección del plano π y la recta r.
- b) Halla el punto simétrico del punto Q = (1, -2, 3) respecto del plano π .

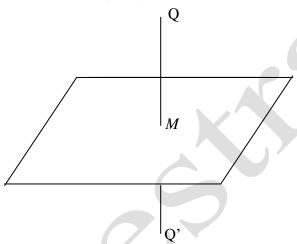
MATEMÁTICAS II. 2011. SEPTIEMBRE. EJERCICIO 4. OPCIÓN B

RESOLUCIÓN

a) Calculamos el punto de intersección resolviendo el sistema formado por las tres ecuaciones

Luego, el punto de intersección es (2,1,4)

b)



Calculamos la ecuación de la recta que pasando por el punto Q es perpendicular al plano. Como la recta es perpendicular al plano, el vector director de dicha recta y el vector normal del plano son paralelos, luego: Vector normal del plano = vector director de la recta = (1, 2, -1).

La ecuación paramétrica de la recta será: $\begin{cases} x = 1 + t \\ y = -2 + 2t \\ z = 3 - t \end{cases}$

Calculamos las coordenadas del punto de intersección de la recta con el plano (M); para ello sustituimos la ecuación de la recta en la del plano: $(1+t)+2\cdot(-2+2t)-(3-t)=0 \Rightarrow t=1$

Luego, las coordenadas del punto M son: x = 2; y = 0; z = 2

Como el punto M es el punto medio del segmento Q Q', si llamamos (a,b,c) a las coordenadas del punto Q', se debe verificar que:

$$\frac{a+1}{2} = 2$$
; $a = 3$; $\frac{b-2}{2} = 0$; $b = 2$; $\frac{c+3}{2} = 2$; $c = 1$

Luego, el punto simétrico es el Q'(3,2,1)